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CALCULATION OF A TWO-PHASE FLOW IN AN AXISYMMETRIC NOZZLE
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A system of differential equations is presemted to describe a two-phase
flow through an axisymmetric supersonic nozzle. The results for the
solution of this system on a "Minsk~14" computer are given. The theo-
retical results are compared qualitatively with the experimental data.

Papers devoted to the experimental and theoretical
investigation of the process of gas discharge from a
supersonic nozzle with condensed-phase inclusions are
appearing with increasing frequency in the domestic
and foreign literature [2, 3, 4]. It has been demonstra-
ted in these references that the critical cross section
for such a flow shifts to the diverging part of the noz-
zle, the condensed phase is left behind, and the veloc~
ity of the gas phase is reduced at the nozzle outlet in
comparison with the flow of a pure gas. It had been
ascertained experimentally that for the complete ex-
pansion of a gas with condensed particle inclusions a
greater degree of nozzle expansion was needed than in
the case of a pure gas.

Here we will calculate the process of a two-phase
flow in an axisymmetric supersonic nozzle and exam-
ine certain of the relationships derived as a result of
the calculation.

In deriving the equations describing the two-phase
flow through an axisymmetric nozzle, we made the
following assumptions:

1) the flow is steady and one-dimensional;

2) the heat eapacity of the gas is independent of
temperature;

3) the gravimetric composition of the two-phase
flow does not change during the course of its motion;

4) the particles are spherical in shape and of iden-
tical diameter;

5) the specific volume of the particles is negligibly
small in comparison with the specific volume of the
gas phase;

6) the wave losses which become possible when the
phase-velocity difference wg — wg reaches the speed
of sound are not taken into consideration;

7) the motion of the flow proceeds without exchange
of heat with the ambient medium; losses due to the
friction of the flow againstthe walls are not considered;

8) there is no exchange of heat between the solid
particles and the gas.

With the assumptions made here, the process of a
two-phase flow through an axisymmetric supersonic
nozzle is described by the following equations:

the equation of state for the gas phase

Vdp 1 dy 1 dT
T dx ’

p dx yg dx

the continuity equation

G dF 1 dw 1 dy g
dx

F dx wy yg dx

the equation of energy for the two-phase flow

dw dw dr
Wely dxg - Wy _dxi + Cp8g P 0, (1)

the equation of momentum

_ 8 9 wg dug

1L g, 2 78
vy dx . dx'gsg dx

the equation of motion for the solid particle

dwg :_Z}_ ¢ Ye (g —w;)?

dv 4 dg v w5

To integrate the system of differential equations
(1) they must be brought to the form
dy

_—-[-xf(x, Yo Yo -

’yn)i:hQ:---)n‘ (2)
dx

Having introduced the speed of sound, and having
brought these equations to the form of (2), we obtain

dog 3 o Ve @g—w)
dx 4 ds Vs ws ’
dwg 1 [(wg dF g adWs)
dx M —1\F dx g dx
dp _ _ Y ( dog g dws )
dx g dx gy dx ,
ar Y (dwg ws g dw )
dx Cp dx wg gg dx
dvg _ Vg dp Ve 4T (3)
dx p dx T dx .

The second equation in system (3) represents the
so-called condition of inverse action. Vulis [1] estab-
lished a relation similar to this for a pure gas.

As follows from the second equation of system (3),
two actions are imposed simultaneously on a gas: the

dF
geometric %g— m and the mechanical (the friction of

the gas against the particles and the expenditure of ki-

netic energy to acceleratethe particles) & e -%w—?« .
&g 21

It is this circumstance that serves as the basis for all

phenomena occurring in a supersonic nozzle through

which a two-phase flow is proceeding. The sign of the

quantity "/ﬁzlt'f varies on transition of the velocity
through the critical value and the nature of the influ-
ence exerted by the individual physical actions on the
gas flow is therefore different (opposite} for subsonic
and supersonic flows. The critical velocity can be at-
tained only in the expanding part of the nozzle, since
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Fig. 1. Change in two-phase flow parameters T(°K}), vg (N/m?), o) (N/m?), Wg (m/sec),
W (m/sec), M with respect to the nozzle length x (mm) for weight composition Bg =
= 0.1 and particle size dg = 107° m.
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Wy dF g g dw

M=1 for —2% . In other words,
X . gg dx
transition through the critical velocity is possible only
atthepointatwhich 28 2F _ 8 pp 9 o Ghie
F  dx 8¢

the velocity is subsonic in the narrow section of the
nozzle in this case. On the basis of the form of the
expression in the parentheses we can state that if the
particles are smallindiameter and giventhat they are
present in great number, the downstream shift in the
critical cross section should be greater than in the
case inwhich theparticles arelarge andfew innumber.

To solve the system of differential equations (3) we
must assume the boundary conditions for fivevariables
(po>» To» Ygor Wgos wgo). I the nozzle were converging
{a subcritical pressure difference), allfive parameters
could be specified at the nozzle inlet and the problem
would be solved. However, if the nozzle profile is su-
percritical (a de Laval-type nozzle), additional con-
siderations are needed for the solution of the problem.
Since the critical parameters in a supersonic nozzle
may be obtained only where ws dF & M2 Ao

F dx g dx

= {),the boundary condition for the gas velocity may be
specified only in the form

wy dF g dwg
== — e 2R M2 ———— e
wy=a for —/° o~ g ix

It is precisely here that the critical cross section of
the nozzle will be found.
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Fig. 2. Distance to critical section

lor (m) and nozzle length Iy (m) as

functions of particle size dg (m) and
weight composition 8g

The system of ordinary differential equations (3)
was solved by the Runge-Kutta method on a "Minsk-
14" computer. The nozzle profile was given before the
integration was started. For conveniencein comparing
the results of the various calculations, all of the noz~
zles were of identical throat area and the expanding
sections of the nozzle all had an identical divergence
angle, The area of the nozzle outlet was determined
by integration to complete expansion of the gas {up to
p = 0.981 » 10° N/m?). The nozzle profile was assumed
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to be rectilinear (dr/dx =const). The velocity of the
solid particles at the inlet to the nozzle was wgy =

= 0.9wgy. The main calculation was carried outfor the
following initial data: py = 4.91 - 10° N/m?, T, ="700° K;
gg = 0.97; 0.8, 0.6; 0.4; 0.2; dg =10« 10™9m; 10%m;
0.2 + 10%m; yg =2.94 « 10*N/m?; k = 1.3; Cp =2100
J/kg - deg; R =491 J/kg . deg; g =3.92 - 10° N+

. sec/m?; g = 9.81 m/sec?.

Figure 1 shows the change in the parameters p, T,
vg> Wg, Wg, and M alongthe nozzle length for gg = 0.4;
dg =10 * 10° m. Aswe canseefromthefigure, in the
narrow nozzle section (x = 8 mm) a gas velocity equal
to the speed of sound is not attained and the critical
cross section shifts to the expanding part (x = 54 mm).

Figure 2 shows how the critical cross section of
the nozzle shifts for various gg and dg. With a reduc-
tion in gg the critical cross section shifts all the more
markedly to the expanding part. For gg = 0.2, there is
no function ley = f(gg, ds), since the pressure difference
py/b; = 5 wasinadequate to accelerate the gasto M = 1.
When gg = 0.97 the critical cross section is found vir-
tually at the narrow cross section of the nozzle.

While the weight composition affects the magnitude
of the shift in the critical cross sectionin a completely

.defined manner, the same cannot be said of the par-

ticle dimensions. For each gy there is a completely
defined particle dimensgion for which the magnitude of
the shift attains a maximum value. A shift to the left
and to the right of the maximum causes the two-phase
flow to approach a pure gas. A shift to the left re~
sults from a reduction in the velocity difference be-
tween the gaseous and solid phases and approach to
total kinematic equilibrium (here there is a reduction
in the mechanical action as a result of a reduction in
the irreversible losses due to friction), while a shift
to the right results from a reduction in the flow of
energy to accelerate the particles because of a pro-
nounced drop in the velocity of the particles as their
diameters are increased.

The length of the nozzle is affected analogously by
gg and dg. With an increase in the total mechanical
action (the mechanical losses plus the energy to ac-
celerate the particles), the nozzle length increases,
reaching a maximum value for a certain dg. The re-
duction in 8g at all particle diameters leads to an
increase in nozzle length, since with a reduction in
gg the mechanical action on the gas is increased. The
curve for gg = 0.2 is somewhat different in nature.
This is explained by the fact that for dg = 0.2X 107 m
and 107 m the pressure difference was inadequate to
accelerate the gas to the speed of sound, since a great
portion of the energy flux was expended onparticle ac-
celeration. It should also be noted that if we take a
nozzle whose length is equal to that of a nozzle calcu-
lated for a pure gas, and if a two-phase flow were
passed through such a nozzle with the same pressure
difference, the nozzle would function with underexpan-
sion. Thus, for gg = 0.4 and dg = 10°m (see Fig. 1)
the pressure at the point corresponding to the length
of such a nozzle (x = 48.6 mm) amounts fop = 1.42 +
+ 10° N/m?®. The same result was obtained by Komov by
direct measurement of the pressure at the nozzle out-
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let in the flow of a pure gas through that nozzle andfor
the flow of a gas with condensed particles [2]. The
same reference presents photographs of the compres-
sion shocks behind the nozzle outlet.'The compression
shock in a two-phase flow is situated farther vostream
than in the case of the discharge of pure air. Since
the critical cross section of a two-phase flow shifts to
the expanding part of the nozzle, the velocities of the
gaseous phase of a two-phase flow and of a pure gas

at the nozzle outlet will be different, with the pure gas
exhibiting a higher velocity. This obviously results in
a situation in which the compression shock in the two-
phase flow will shift farther upstream than the com-
pression shock in a pure gas.

The analysis of the changes in the velocities of the
gas and solid particles as a function of the change in
the weight composition and particle dimensions (Fig. 3a)
shows that the largest particles exhibit the greatest lag,
while the least lag is exhibited by the fine particles. It
isinteresting to note that large particles over the entire
range of variationin 8g change their velocity only slightly.
The velocity of the gas and of the particles increases
with increasing gg, while the gas velocity for gg close
to 1 tends to the velocity of discharge for a pure gas.
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Fig. 3. Change in gas velocity
wg (m/sec), solid particles wg
(m/sec), and slip coefficient w
as functions of a change in par-
ticle size dg (m) and weight com~
position gg.

To analyze the irreversible losses arising as a
result of particle friction against the gas, it is of in-
terest to trace the change in the adiabatic efficiency 7
of the discharge process for a two-phase flow. This
can be expressed as

1’] _ TO~T2 . (4)
To—T

However, the same efficiency can be expressed in
terms of the phase velocities, using the equation for
the conservation of energy

2 8s 40
wy -+ w?
b &g
M = -

2
wag
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Since —— = <—> , with consideration of (4)
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From the function n = f(gg, ds), shown in Fig. 4a,
we see that with a reduction in gg the irreversible los-
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Fig. 4. Dependence of effi-
ciency 1 of outflow and spe-
cific impulse I (sec) of two-
phase flow related to a gas
phase onweight composition
gg and particle size dg (m).
1) dg = 0.2 * 107%; 2) 107°;
3) 10 - 107°.
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ses due to friction increase and the adiabatic efficien-
cy of the discharge process for the two-phase flow
diminishes. With a reduction in particle dimensions
these lag decreasingly behind the gas and the losses
due to friction diminish. The losses are reduced par-
ticularly sharply when the particle dimensions become
smaller than (1-2) X 107° m.

1t has been established that with increasing particle
dimension the slip factor w = wg/wg (Fig. 3b) dimin-
ishes. The dependence of the slip factor on the weight
composition is rather weak in comparison with its de-
pendence on the particle dimensions. This is particu-
larly valid for small particles. Thus, for particles
with dg = 0.2 - 10 m with a change in gg from 0.97 to
0.2 the slip factor changes from 0.93 to 0.95. The in-
crease in the slip factor with an increase in the weight
composition of the solid phase can be explained by the
increase in nozzle length in this case (see Fig. 2).
With a greater nozzle length the particles can achieve
greater acceleration and the slip factor increases. An
increase in particle lag leads to a pronouncedincrease
in the irreversible friction losses, It is precisely for
this reason that the greatest losses occur in the mo-
tion of a two-phase flow with large particles (Fig. 4a).

The specific impulse of a two-phase flow (Fig. 4b),
referred to the gas phase,

[ @e o & Y5
g g &
As we can see from the figure, with an increase in the

weight composition of the solid phase the specific im-
pulse increases. A reduction in particle dimensions
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leads to an even greater increase in the specific im-
pulse. The specific impulse of a two~phase mixture
for gg = 0.2 and dg = 0.2 + 10° m is greater than the
specific impulse for a pure gas by a factor of approx-
imately two. For large particles dg = 10 + 10°m in
the range gz = 0.5-1 the specific impulse remains
virtually unchanged and is approximately equal to the
specific impulse of a pure gas, which can be explained
by the virtually constant and extremely low velocity of
the solid phase.

It is obvious that the results of the calculations are
limited by the framework of the adopted assumptions.
In conclusion, we should dwell on one of these, i.e.,
on the assumption that there is no exchange of heat
between the phases. To evaluate the effect of this as-
sumption on the flow parameters at the nozzle outlet,
we carried out a calculation with consideration of the
transfer of heat between the phases for gy = 0.4 and
dg = 107 m. After the calculation was carried out the
heat-transfer equation

dl, 6g o 1
3600°

=— (T, — T,
dx Csds Y Wy e

was introduced into the system of equations (8) and the

equation for the conservation of energy will have the
form

’

dly We ( dw, "

e ¢, \ dx

gs ws dw ) gl dT
gz w, dx | g ¢, dx

In the determination of the heat-transfer coefficient
o it was assumed that the spherical particles are sub-
ject to steady streamlining. This same assumption
served to evaluate the maximum effect which might be
exerted, by the exchange of heat between the phases,
on the process for the discharge of two-phase flow. As
a matter of actual fact, the flow past the spheres is
nonsteady and the exchange of heat between the phases
is smaller.

The calculation showed that consideration of the ex-
change of heat (for gg = 0.4 and dg = 10-% m) leads to
an insignificant change inthe efficiency of the discharge
process (by 0.3%) andinthe specific impulse (by 0.15%.

This slight effect on the part of heat transfer may
be explained by the fact that the heating of the gas due
to the transfer of heat along the nozzle occurs most
intensively at the end of the expansion process.

NOTATION

dg is the solid-particle diameter;
gg and gg arethemass fractions of thegas and solid

phases in a flow;
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wg and wg are the velocities of the gas and solid

; phases in a flow;

w is the slip coefficient;

a is the speed of sound of the gas phase;

p is the pressure of the gas phase in flow;

vg and yg are the specific weight of the gas and solid
phases in the flow;

r and F are the radius and area of a nozzle cross-
section;

x is the coordinate along the nozzle axis;

v is the normal to it;

Ith, lop, and Iy are the distances from the exit to
the throat, to the critical cross-section, and to the

‘nozzle exit;

cx is the resistance coefficient of a sphere placed
into a gas flow;

M is the relation of the velocity of a gas phase fo
the speed of sound;

k, ep, R are the adiabatic exponent, the specific
heat capacity at constant pressure, and the gas con-
stant of the gas phase;

ug is the dynamic viscosity coefficient of the gas
phase;

T, is the gas temperature at the nozzle exit;

T, is the gas temperature at the nozzle outlet when
pure gas flows over it under adiabatic conditions;

T, is the gas temperature at the nozzle outlet when
two-phase flow moves over it (for an identical pres-
sure drop);

7 is the adiabatic efficiency of two-phase discharge;

1is the specific impulse related to the gas phase;

« is the heat transfer coefficient;

Subscripts: 0 is the parameter at the nozzle exit;

1 is the parameter at the nozzle outlet; g is the gas
phase; s is the solid phase; th is the throat; cr is the
critical section; n is the nozzle.
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